Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biosensors & bioelectronics ; 2023.
Article in English | EuropePMC | ID: covidwho-2268243

ABSTRACT

Rapid, sensitive, and inexpensive point-of-care diagnosis is vital to controlling highly infectious diseases, including COVID-19. Here, we report the design and characterization of a compact fluorimeter called a "Virus Pod” (V-Pod) that enables sensitive self-testing of SARS-CoV-2 viral load in saliva. The rechargeable battery-operated device reads the fluorescence generated by Designer DNA Nanostructures (DDN) when they specifically interact with intact SARS-CoV-2 virions. DDNs are net-shaped self-assembling nucleic acid constructs that provide an array of highly specific aptamer-fluorescent quencher duplexes located at precise positions that match the pattern of spike proteins. The room-temperature assay is performed by mixing the test sample with DNA Net sensor in a conventional PCR tube and placing the tube into the V-Pod. Fluorescent signals are generated when multivalent aptamer-spike binding releases fluorescent quenchers, resulting in rapid (5-min) generation of dose-dependent output. The V-Pod instrument performs laser excitation, fluorescence intensity quantitation, and secure transmission of data to an App via Bluetooth™. We show that the V-Pod and DNA Net assay achieves clinically relevant detection limits of 3.92 × 103 viral-genome-copies/mL for pseudo-typed wild-type SARS-CoV-2 and 1.84 × 104, 9.69 × 104, 6.99 × 104 viral-genome-copies/mL for pathogenic Delta, Omicron, and D614G variants, representing sensitivity similar to laboratory-based PCR. The pocket-sized instrument (∼$294), inexpensive reagent-cost/test ($1.26), single-step, rapid sample-to-answer, and quantitative output represent a capability that is compatible with the needs of frequent self-testing in a consumer-friendly format that can link with medical service systems such as healthcare providers, contact tracing, and infectious disease reporting.

2.
Biosens Bioelectron ; 229: 115228, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2268244

ABSTRACT

Rapid, sensitive, and inexpensive point-of-care diagnosis is vital to controlling highly infectious diseases, including COVID-19. Here, we report the design and characterization of a compact fluorimeter called a "Virus Pod" (V-Pod) that enables sensitive self-testing of SARS-CoV-2 viral load in saliva. The rechargeable battery-operated device reads the fluorescence generated by Designer DNA Nanostructures (DDN) when they specifically interact with intact SARS-CoV-2 virions. DDNs are net-shaped self-assembling nucleic acid constructs that provide an array of highly specific aptamer-fluorescent quencher duplexes located at precise positions that match the pattern of spike proteins. The room-temperature assay is performed by mixing the test sample with DNA Net sensor in a conventional PCR tube and placing the tube into the V-Pod. Fluorescent signals are generated when multivalent aptamer-spike binding releases fluorescent quenchers, resulting in rapid (5-min) generation of dose-dependent output. The V-Pod instrument performs laser excitation, fluorescence intensity quantitation, and secure transmission of data to an App via Bluetooth™. We show that the V-Pod and DNA Net assay achieves clinically relevant detection limits of 3.92 × 103 viral-genome-copies/mL for pseudo-typed wild-type SARS-CoV-2 and 1.84 × 104, 9.69 × 104, 6.99 × 104 viral-genome-copies/mL for pathogenic Delta, Omicron, and D614G variants, representing sensitivity similar to laboratory-based PCR. The pocket-sized instrument (∼$294), inexpensive reagent-cost/test ($1.26), single-step, rapid sample-to-answer, and quantitative output represent a capability that is compatible with the needs of frequent self-testing in a consumer-friendly format that can link with medical service systems such as healthcare providers, contact tracing, and infectious disease reporting.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Smartphone , Biosensing Techniques/methods , DNA , Sensitivity and Specificity
3.
Front Immunol ; 13: 984476, 2022.
Article in English | MEDLINE | ID: covidwho-2154723

ABSTRACT

Regulatory T cells that express the transcription factor Foxp3 (Treg cells) are a highly heterogenous population of immunoregulatory cells critical for maintaining immune homeostasis and preventing immunopathology during infections. Tissue resident Treg (TR-Treg) cells are maintained within nonlymphoid tissues and have been shown to suppress proinflammatory tissue resident T cell responses and promote tissue repair. Human populations are repetitively exposed to influenza infections and lung tissue resident effector T cell responses are associated with flu-induced long-term pulmonary sequelae. The kinetics of TR-Treg cell development and molecular features of TR-Treg cells during repeated and/or long-term flu infections are unclear. Utilizing a Foxp3RFP/IL-10GFP dual reporter mouse model along with intravascular fluorescent in vivo labeling, we characterized the TR-Treg cell responses to repetitive heterosubtypic influenza infections. We found lung tissue resident Treg cells accumulated and expressed high levels of co-inhibitory and co-stimulatory receptors post primary and secondary infections. Blockade of PD-1 or ICOS signaling reveals that PD-1 and ICOS signaling pathways counter-regulate TR-Treg cell expansion and IL-10 production, during secondary influenza infection. Furthermore, the virus-specific TR-Treg cell response displayed distinct kinetics, when compared to conventional CD4+ tissue resident memory T cells, during secondary flu infection. Our results provide insight into the tissue resident Foxp3+ regulatory T cell response during repetitive flu infections, which may be applicable to other respiratory infectious diseases such as tuberculosis and COVID.


Subject(s)
COVID-19 , Animals , Forkhead Transcription Factors/metabolism , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-10 , Mice , Orthomyxoviridae Infections , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory
4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2046163

ABSTRACT

Regulatory T cells that express the transcription factor Foxp3 (Treg cells) are a highly heterogenous population of immunoregulatory cells critical for maintaining immune homeostasis and preventing immunopathology during infections. Tissue resident Treg (TR-Treg) cells are maintained within nonlymphoid tissues and have been shown to suppress proinflammatory tissue resident T cell responses and promote tissue repair. Human populations are repetitively exposed to influenza infections and lung tissue resident effector T cell responses are associated with flu-induced long-term pulmonary sequelae. The kinetics of TR-Treg cell development and molecular features of TR-Treg cells during repeated and/or long-term flu infections are unclear. Utilizing a Foxp3RFP/IL-10GFP dual reporter mouse model along with intravascular fluorescent in vivo labeling, we characterized the TR-Treg cell responses to repetitive heterosubtypic influenza infections. We found lung tissue resident Treg cells accumulated and expressed high levels of co-inhibitory and co-stimulatory receptors post primary and secondary infections. Blockade of PD-1 or ICOS signaling reveals that PD-1 and ICOS signaling pathways counter-regulate TR-Treg cell expansion and IL-10 production, during secondary influenza infection. Furthermore, the virus-specific TR-Treg cell response displayed distinct kinetics, when compared to conventional CD4+ tissue resident memory T cells, during secondary flu infection. Our results provide insight into the tissue resident Foxp3+ regulatory T cell response during repetitive flu infections, which may be applicable to other respiratory infectious diseases such as tuberculosis and COVID.

5.
J Am Chem Soc ; 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1960254

ABSTRACT

We present a net-shaped DNA nanostructure (called "DNA Net" herein) design strategy for selective recognition and high-affinity capture of intact SARS-CoV-2 virions through spatial pattern-matching and multivalent interactions between the aptamers (targeting wild-type spike-RBD) positioned on the DNA Net and the trimeric spike glycoproteins displayed on the viral outer surface. Carrying a designer nanoswitch, the DNA Net-aptamers release fluorescence signals upon virus binding that are easily read with a handheld fluorimeter for a rapid (in 10 min), simple (mix-and-read), sensitive (PCR equivalent), room temperature compatible, and inexpensive (∼$1.26/test) COVID-19 test assay. The DNA Net-aptamers also impede authentic wild-type SARS-CoV-2 infection in cell culture with a near 1 × 103-fold enhancement of the monomeric aptamer. Furthermore, our DNA Net design principle and strategy can be customized to tackle other life-threatening and economically influential viruses like influenza and HIV, whose surfaces carry class-I viral envelope glycoproteins like the SARS-CoV-2 spikes in trimeric forms.

6.
Viruses ; 14(3)2022 03 19.
Article in English | MEDLINE | ID: covidwho-1760848

ABSTRACT

The SARS-CoV-2 spike protein mediates target recognition, cellular entry, and ultimately the viral infection that leads to various levels of COVID-19 severities. Positive evolutionary selection of mutations within the spike protein has led to the genesis of new SARS-CoV-2 variants with greatly enhanced overall fitness. Given the trend of variants with increased fitness arising from spike protein alterations, it is critical that the scientific community understand the mechanisms by which these mutations alter viral functions. As of March 2022, five SARS-CoV-2 strains were labeled "variants of concern" by the World Health Organization: the Alpha, Beta, Gamma, Delta, and Omicron variants. This review summarizes the potential mechanisms by which the common mutations on the spike protein that occur within these strains enhance the overall fitness of their respective variants. In addressing these mutations within the context of the SARS-CoV-2 spike protein structure, spike/receptor binding interface, spike/antibody binding, and virus neutralization, we summarize the general paradigms that can be used to estimate the effects of future mutations along SARS-CoV-2 evolution.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Membrane Glycoproteins , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL